Author Affiliations
Abstract
1 State Key Laboratory of Integrated Service Networks, State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, Xidian University, Xi’an 710071, China
2 Yongjiang Laboratory, No. 1792 Cihai South Road, Ningbo 315202, China
3 The School of Communications and Information Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, China
4 Laboratory of Solid-State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
5 School of Information Science and Technology, Nantong University, Nantong 226019, China
6 The College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
7 Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
8 Lightelligence Group, Hangzhou 311121, China
Neuromorphic photonic computing has emerged as a competitive computing paradigm to overcome the bottlenecks of the von-Neumann architecture. Linear weighting and nonlinear spike activation are two fundamental functions of a photonic spiking neural network (PSNN). However, they are separately implemented with different photonic materials and devices, hindering the large-scale integration of PSNN. Here, we propose, fabricate and experimentally demonstrate a photonic neuro-synaptic chip enabling the simultaneous implementation of linear weighting and nonlinear spike activation based on a distributed feedback (DFB) laser with a saturable absorber (DFB-SA). A prototypical system is experimentally constructed to demonstrate the parallel weighted function and nonlinear spike activation. Furthermore, a four-channel DFB-SA laser array is fabricated for realizing matrix convolution of a spiking convolutional neural network, achieving a recognition accuracy of 87% for the MNIST dataset. The fabricated neuro-synaptic chip offers a fundamental building block to construct the large-scale integrated PSNN chip.
neuromorphic computation photonic spiking neuron photonic integrated DFB-SA array convolutional spiking neural network 
Opto-Electronic Advances
2023, 6(11): 230140
Author Affiliations
Abstract
1 State Key Laboratory of Integrated Service Networks, State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, Xidian University, Xi’an 710071, China
2 Yongjiang Laboratory, Ningbo 315202, China
3 Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, the National Laboratory of Solid State Microstructures, the College of Engineering and Applied Sciences, Institute of Optical Communication Engineering, Nanjing University, Nanjing 210023, China
Spiking neural networks (SNNs) utilize brain-like spatiotemporal spike encoding for simulating brain functions. Photonic SNN offers an ultrahigh speed and power efficiency platform for implementing high-performance neuromorphic computing. Here, we proposed a multi-synaptic photonic SNN, combining the modified remote supervised learning with delay-weight co-training to achieve pattern classification. The impact of multi-synaptic connections and the robustness of the network were investigated through numerical simulations. In addition, the collaborative computing of algorithm and hardware was demonstrated based on a fabricated integrated distributed feedback laser with a saturable absorber (DFB-SA), where 10 different noisy digital patterns were successfully classified. A functional photonic SNN that far exceeds the scale limit of hardware integration was achieved based on time-division multiplexing, demonstrating the capability of hardware-algorithm co-computation.
photonic spiking neural network fabricated DFB-SA laser chip multi-synaptic connection optical computing 
Opto-Electronic Science
2023, 2(9): 230021
Author Affiliations
Abstract
1 State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an 710071, China
2 State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, Xidian University, Xi’an 710071, China
3 Yongjiang Laboratory, Ningbo 315202, China
4 Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Institute of Optical Communication Engineering, Nanjing University, Nanjing 210023, China
Dendrites, branches of neurons that transmit signals between synapses and soma, play a vital role in spiking information processing, such as nonlinear integration of excitatory and inhibitory stimuli. However, the investigation of nonlinear integration of dendrites in photonic neurons and the fabrication of photonic neurons including dendritic nonlinear integration in photonic spiking neural networks (SNNs) remain open problems. Here, we fabricate and integrate two dendrites and one soma in a single Fabry–Perot laser with an embedded saturable absorber (FP-SA) neuron to achieve nonlinear integration of excitatory and inhibitory stimuli. Note that the two intrinsic electrodes of the gain section and saturable absorber (SA) section in the FP-SA neuron are defined as two dendrites for two ports of stimuli reception, with one electronic dendrite receiving excitatory stimulus and the other receiving inhibitory stimulus. The stimuli received by two electronic dendrites are integrated nonlinearly in a single FP-SA neuron, which generates spikes for photonic SNNs. The properties of frequency encoding and spatiotemporal encoding are investigated experimentally in a single FP-SA neuron with two electronic dendrites. For SNNs equipped with FP-SA neurons, the range of weights between presynaptic neurons and postsynaptic neurons is varied from negative to positive values by biasing the gain and SA sections of FP-SA neurons. Compared with SNN with all-positive weights realized by only biasing the gain section of photonic neurons, the recognition accuracy of Iris flower data is improved numerically in SNN consisting of FP-SA neurons. The results show great potential for multi-functional integrated photonic SNN chips.
Photonics Research
2023, 11(12): 2033
Author Affiliations
Abstract
1 Yongjiang Laboratory, Ningbo 315202, China
2 State Key Laboratory of Integrated Service Networks, State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, Xidian University, Xi’an 710071, China
3 Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Institute of Optical Communication Engineering, Nanjing University, Nanjing 210023, China
4 School of Science, Jiangnan University, Wuxi 214122, China
5 School of Information Science and Technology, Nantong University, Nantong 226019, China
6 Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario L8S 4K1, Canada
7 e-mail: yuechun-shi@ylab.ac.cn
We proposed and experimentally demonstrated a simple and novel photonic spiking neuron based on a distributed feedback (DFB) laser chip with an intracavity saturable absorber (SA). The DFB laser with an intracavity SA (DFB-SA) contains a gain region and an SA region. The gain region is designed and fabricated by the asymmetric equivalent π-phase shift based on the reconstruction-equivalent-chirp technique. Under properly injected current in the gain region and reversely biased voltage in the SA region, periodic self-pulsation was experimentally observed due to the Q-switching effect. The self-pulsation frequency increases with the increase of the bias current and is within the range of several gigahertz. When the bias current is below the self-pulsation threshold, neuronlike spiking responses appear when external optical stimulus pulses are injected. Experimental results show that the spike threshold, temporal integration, and refractory period can all be observed in the fabricated DFB-SA chip. To numerically verify the experimental findings, a time-dependent coupled-wave equation model was developed, which described the physics processes inside the gain and SA regions. The numerical results agree well with the experimental measurements. We further experimentally demonstrated that the weighted sum output can readily be encoded into the self-pulsation frequency of the DFB-SA neuron. We also benchmarked the handwritten digit classification task with a simple single-layer fully connected neural network. By using the experimentally measured dependence of the self-pulsation frequency on the bias current in the gain region as an activation function, we can achieve a recognition accuracy of 92.2%, which bridges the gap between the continuous valued artificial neural networks and spike-based neuromorphic networks. To the best of our knowledge, this is the first experimental demonstration of a photonic integrated spiking neuron based on a DFB-SA, which shows great potential to realizing large-scale multiwavelength photonic spiking neural network chips.
Photonics Research
2023, 11(8): 1382
项水英 1,2,*宋紫薇 1高爽 1韩亚楠 1[ ... ]郝跃 2
作者单位
摘要
1 西安电子科技大学 综合业务网理论与关键技术国家重点实验室,西安 710071
2 西安电子科技大学 微电子学院 宽禁带半导体国家工程研究中心,西安 710071
脑科学与类脑研究是国际必争战略性前沿。人工智能与深度学习的飞速发展对算力提出了迫切需求。而传统的冯诺依曼架构,由于存算分离导致功耗墙和内存墙,摩尔定律也逐渐放缓。光神经拟态计算充分融合高速光通信、光互连、光集成、硅基光电子与神经拟态计算的特点,具有超高速、大带宽、多维度等优势,在高性能计算、人工智能领域有广阔的应用前景,是突破后摩尔时代传统微电子计算极限极具竞争力的方案。本文回顾了国内外主要研究团队在光神经元、光突触、光神经网络的理论、算法及器件方面的工作,并提出了展望。
光神经形态计算 神经元 突触 突触可塑性 光神经网络 Photonic neuromorphic computing Neuron Synapse Synaptic plasticity Optical neural networks 
光子学报
2021, 50(10): 1020001
Author Affiliations
Abstract
1 State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an 710071, China
2 State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Microelectronics, Xidian University, Xi’an 710071, China
3 State Key Laboratory of Advanced Optical Communication Systems and Networks, Intelligent Microwave Lightwave Integration Innovation Center (iMLic), Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
4 Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
5 School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
6 School of Physical Science and Technology, Southwest University, Chongqing 400715, China
The explosive growth of data and information has motivated various emerging non-von Neumann computational approaches in the More-than-Moore era. Photonics neuromorphic computing has attracted lots of attention due to the fascinating advantages such as high speed, wide bandwidth, and massive parallelism. Here, we offer a review on the optical neural computing in our research groups at the device and system levels. The photonics neuron and photonics synapse plasticity are presented. In addition, we introduce several optical neural computing architectures and algorithms including photonic spiking neural network, photonic convolutional neural network, photonic matrix computation, photonic reservoir computing, and photonic reinforcement learning. Finally, we summarize the major challenges faced by photonic neuromorphic computing, and propose promising solutions and perspectives.
Journal of Semiconductors
2021, 42(2): 023105
Author Affiliations
Abstract
1 State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an 710071, China
2 State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi’an 710071, China

We propose a modified supervised learning algorithm for optical spiking neural networks, which introduces synaptic time-delay plasticity on the basis of traditional weight training. Delay learning is combined with the remote supervised method that is incorporated with photonic spike-timing-dependent plasticity. A spike sequence learning task implemented via the proposed algorithm is found to have better performance than via the traditional weight-based method. Moreover, the proposed algorithm is also applied to two benchmark data sets for classification. In a simple network structure with only a few optical neurons, the classification accuracy based on the delay-weight learning algorithm is significantly improved compared with weight-based learning. The introduction of delay adjusting improves the learning efficiency and performance of the algorithm, which is helpful for photonic neuromorphic computing and is also important specifically for understanding information processing in the biological brain.

Photonics Research
2021, 9(4): 0400B119
Author Affiliations
Abstract
1 State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an 710071, China
2 State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
We propose and demonstrate experimentally and numerically a network of three globally coupled semiconductor lasers (SLs) that generate triple-channel chaotic signals with time delayed signature (TDS) concealment. The effects of the coupling strength and bias current on the concealment of the TDS are investigated. The generated chaotic signals are further applied to reinforcement learning, and a parallel scheme is proposed to solve the multiarmed bandit (MAB) problem. The influences of mutual correlation between signals from different channels, the sampling interval of signals, and the TDS concealment on the performance of decision making are analyzed. Comparisons between the proposed scheme and two existing schemes show that, with a simplified algorithm, the proposed scheme can perform as well as the previous schemes or even better. Moreover, we also consider the robustness of decision making performance against a dynamically changing environment and verify the scalability for MAB problems with different sizes. This proposed globally coupled SL network for a multi-channel chaotic source is simple in structure and easy to implement. The attempt to solve the MAB problem in parallel can provide potential values in the realm of the application of ultrafast photonics intelligence.
Photonics Research
2020, 8(11): 11001792

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!